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Abstract

Although 3D Gaussian Splatting (3DGS) has demonstrated

promising results in novel view synthesis, its performance

degrades dramatically with sparse inputs and generates un-

desirable artifacts. As the number of training views de-

creases, the novel view synthesis task degrades to a highly

under-determined problem such that existing methods suf-

fer from the notorious overfitting issue. Interestingly, we

observe that models with fewer Gaussian primitives exhibit

less overfitting under sparse inputs. Inspired by this ob-

servation, we propose a Random Dropout Regularization

(RDR) to exploit the advantages of low-complexity mod-

els to alleviate overfitting. In addition, to remedy the lack

of high-frequency details for these models, an Edge-guided

Splitting Strategy (ESS) is developed. With these two tech-

niques, our method (termed DropoutGS) provides a simple

yet effective plug-in approach to improve the generaliza-

tion performance of existing 3DGS methods. Extensive ex-

periments show that our DropoutGS produces state-of-the-

art performance under sparse views on benchmark datasets

including Blender, LLFF, and DTU. The project page is

at: https://xuyx55.github.io/DropoutGS/.

1. Introduction

The computer vision community has witnessed incredible

advances of Novel View Synthesis (NVS), which aims at

synthesizing novel views of a scene from a set of observed

views. Traditional methods employ explicit scene represen-

tations, such as point clouds [10], voxels [6], and meshes

[38], to represent the 3D scene for novel view synthesis. Re-

cently, learning-based methods have achieved remarkable

progress compared to previous ones. Specifically, Neural

Radiance Field (NeRF) [27] represents a scene with a neural

network, achieving high-quality rendering and lightweight

storage. 3D Gaussian Splatting (3DGS) [21] decomposes

a scene into a set of discrete Gaussian primitives and uti-

*Equal contribution.
†Corresponding author.
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Figure 1. Results produced by 3DGS with different numbers of

Gaussians. The training loss curves and rendered results are visu-

alized for comparison. Compared with the model with 1k Gaus-

sians, the one with 10k Gaussians suffers overfitting and produces

inferior results.

lizes a splat-based rendering technique to generate novel

views in real time. Nevertheless, these methods require a

large number of training views and suffer from notable per-

formance drops with insufficient views, which limits their

applications in real-world scenarios.

To achieve novel view synthesis under sparse views,

DRGS [7] encourages Gaussian primitives to align with the

object surface by using the depth information obtained from

a pre-trained monocular depth estimator. Then, DNGaus-

sian [23] improves the depth regularization by further con-

sidering the smoothness of the predicted depth map. In

addition, DNGaussian proposes a global-local depth nor-

malization to address the scale inconsistency in monocular

depth estimation. However, these methods are sensitive to

the accuracy of the depth map and the depth error may be

amplified to produce unsatisfactory artifacts.

In this paper, we take a step to investigate the perfor-

mance degradation of 3DGS under sparse views. Interest-

ingly, we observe a notorious overfitting issue during the

training of 3DGS, as illustrated in Fig. 1. While the training

https://xuyx55.github.io/DropoutGS/


loss of the model with 10k Gaussians continues to decrease,

the test loss begins to increase after 3000 iterations. Mean-

while, the rendered image suffers severe hollow artifacts.

In contrast, this phenomenon is weakened when the num-

ber of Gaussians is reduced to 1k and the rendered images

are smoother. Nevertheless, the edge and texture become

blurry. In summary, under sparse views, 3DGS is easily

over-parameterized and prone to overfitting the training data

without capturing the 3D structure.

Inspired by this observation, we propose DropoutGS

that combines an effective yet efficient dropout technique

with 3DGS to address the overfitting issue under sparse

views. Specifically, our DropoutGS randomly dropouts sev-

eral Gaussians during training to alleviate overfitting. To

remedy the detail loss caused by the dropout technique, we

further introduce an Edge-guided Splitting Strategy (ESS)

to encourage the Gaussians to focus more on edge regions.

While previous sparse view synthesis methods commonly

rely on exploring additional constraints (e.g., depth maps) to

produce satisfactory performance, our DropoutGS attempts

to handle this issue from another perspective of overfitting.

Extensive experiments show that our DropoutGS produces

competitive performance against previous methods on di-

verse benchmark datasets.

Overall, the main contributions are summarized as fol-

lows:

• We study the performance degradation of 3DGS under

sparse views and attribute it to the overfitting issue. From

this point of view, we propose DropoutGS to leverage the

dropout technique to alleviate this problem.

• We propose a Random Dropout Regularization (RDR) to

alleviate overfitting and obtain smooth rendering results

by randomly dropping out Gaussians during optimization.

• We introduce an Edge-guided Splitting Strategy (ESS) to

encourage 3DGS to focus more on edge regions during

optimization for finer details.

• Our DropoutGS is compatible with diverse 3DGS-based

methods and achieves state-of-the-art performance on

multiple benchmark datasets.

2. Related Work

2.1. Novel View Synthesis

Novel View Synthesis (NVS) is a long-standing task aim-

ing at generating novel views of a scene from a set of

observed images. In this field, radiance fields are widely

used and produce remarkable progress. Neural Radiance

Fields (NeRF) [27] encodes scenes into a neural network

and achieves high-fidelity view synthesis by volumetric ren-

dering. However, the computationally intensive render-

ing processes limit its scalability and efficiency. Later, a

number of methods are developed to improve the render-

ing speed [14, 24, 28, 39] and image quality [2, 3, 13] of

NeRF. More recently, the unstructured radiance field 3DGS

proposed by Bernhard et al. has achieved significant break-

throughs in novel view synthesis tasks. 3DGS represents

complex scenes using a series of discrete Gaussian basis

functions. In addition, efficient and differentiable splatting

techniques are adopted for real-time rendering. Inspired by

the success of 3DGS, subsequent methods further improve

its representational capabilities [16, 18] and splitting strate-

gies [11, 46, 52]. Despite remarkable results, these methods

suffer severe performance drops under sparse views.

To achieve novel view synthesis under sparse views,

early works have explored various regularizations for NeRF,

including depth [8, 31, 37], normal [33], frequency [45] and

cross-view consistency [22, 35]. As for recent 3DGS, depth

prior [7, 23, 44, 54] has also been widely studied to stabilize

the optimization of Gaussians under sparse views. Despite

remarkable progress, these methods still suffer two limita-

tions. First, these methods rely on an additional monocular

depth estimation module to obtain the depth map, which in-

troduces extra computational overhead. Second, as 3DGS

is sensitive to depth accuracy, depth errors could be accu-

mulated and amplified to produce undesirable artifacts in

the rendered images. Different from the aforementioned

methods, we propose an alternative to consider the perfor-

mance degradation as an overfitting problem and introduce

a DropoutGS method.

2.2. Overfitting in Deep Learning

Overfitting is a notorious problem in deep learning. It usu-

ally arises from limited training data, high model complex-

ity, or insufficient regularization, leading to poor gener-

alization on unseen samples. To address this issue, var-

ious strategies have been studied. Specifically, dropout

[12, 34, 36, 43], as one of the most effective techniques,

improves the robustness of the model by randomly deacti-

vating a subset of neurons during training. Data augmenta-

tion strategies [9, 48, 49, 53] have been widely investigated

to increase the diversity of training data. Adversarial train-

ing [15, 25, 30, 42] aims to introduce multiple perturbations

like noise in the training process, encouraging the model to

become more resilient and robust to outliers.

In this paper, we observe a similar overfitting issue

for 3DGS under sparse training views. Motivated by the

great success of dropout to address this issue, we develop

DropoutGS by incorporating a Random Dropout Regular-

ization (RDR) to smooth out the overfitting degradation and

an Edge-guided Splitting Strategy (ESS) to compensate for

the detail loss.

3. Method

Our DroupGS consists of a Random Dropout Regulariza-

tion (RDR) and Edge-guided Splitting Strategy (ESS), as

illustrated in Fig. 2. In this section, we first present the pre-



liminaries of 3DGS in Sec. 3.1. Then, we conduct pilot ex-

periments to illustrate our motivation in Sec. 3.2. Next, we

detail our method designs separately. Finally, we present

the loss function of our method in Sec. 3.5.

+ RDR

DNGaussian DropoutGS

+ ESS

Coarse Rendering Fine Rendering

Render

Figure 2. An overview of our framework. RDR is first employed

to alleviate the overfitting issue. Then, ESS is adopted to split the

large Gaussians to better capture high-frequency details.

3.1. Preliminaries

3DGS [21] represents a 3D scene with a set of Gaussian

primitives, each with trainable parameters including mean

position µ, 3D covariance Σ, scaling factor s, opacity o, and

spherical harmonic features f . 3DGS employs the Gaussian

basis functions to capture the spatial distribution of scene

features. The rendering process blenders these basis func-

tions to generate views, calculating the color as a weighted

summation of Gaussian primitives:

C(x) =
∑

i∈N

αi

i−1
∏

j=1

(1− αj)ci =
∑

i∈N

wici, (1)

where ci is the decoded spherical harmonic features, and

wi measures the contribution of Gaussians to the rendering

results.

3.2. Pilot Study

It is widely known that the imbalance between model com-

plexity and training data amount is a primary reason for

overfitting. For 3DGS, the number of Gaussian primitives

determines the complexity of the model while the number

of training views refers to the training data amount. From

this point of view, we attribute the performance degradation

of 3DGS under sparse views to the overfitting caused by an

excessive number of Gaussian primitives.

To demonstrate this, we first investigate the performance

of 3DGS with different numbers of Gaussian primitives un-

der sparse training views. Specifically, we initialize the

3DGS using point clouds with different numbers of points

and train these models on the DTU dataset. Note that, den-

sification and pruning are not performed to maintain con-

sistent model complexity throughout the training phase. As
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Figure 3. The relationship between the amount of training data

and model complexity. We investigate the performance of 3DGS

with different primitive settings under varying numbers of sparse

views. The results show that models achieve optimal performance

when their complexity matches the training data.
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Figure 4. The scale distribution of the Gaussians learned by

models with different complexities. The models with 10k and

20k primitives have a large portion of small-scale Gaussians. In

contrast, the model with 1k primitives obtains more Gaussians

with larger scales.

illustrated in Fig. 3, the model with 1k primitives achieves

the best performance under 3-view input while models with

higher complexity suffer from performance degradation.

Meanwhile, as the number of input views increases, the op-

timal model size grows from 1k to 10k. These observations

demonstrate that an excessive number of Gaussian primi-

tives leads to the overfitting issue and inferior performance.

On top of the above experiments, we further conduct ex-

periments to study the Gaussian primitives in the trained

models. Specifically, we visualize the scales of the Gaus-

sians across different models in Fig. 4. As we can see,

the higher the model complexity is, the smaller the learned

Gaussians are. Under this condition, the model is prone to

overfitting the details in the training views without under-

standing the 3D structure. In contrast, the model with fewer

Gaussian is encouraged to enlarge the Gaussian primitives

to cover the contents in the training views. As a result, the

3D structure can be better modeled but high-frequency de-

tails cannot be well captured.

From the observations above, we can draw two chal-



lenges that limit the performance of 3DGS under sparse

training views. First, over-parameterized models suffer

from the overfitting issue and produce degraded perfor-

mance. Second, decreasing the number of Gaussians alle-

viates the overfitting problem at the cost of the inferior ca-

pability to capture high-frequency details. To address these

two challenges, we propose a coarse-to-fine framework with

a random dropout regularization (RDR) to alleviate overfit-

ting and an edge-guided splitting strategy (ESS) to remedy

the missing details.

3.3. Random Dropout Regularization (RDR)

During the training phase, the Gaussian primitives are ran-

domly deactivated with a probability p and the remaining

Gaussian primitives are optimized to fit the observed views.

Mathematically, the rendered color Ĉ for a pixel can be ob-

tained as:























z ∼ Uniform (0, 1)

r = [z > p]

Ĉ =
∑

i∈N

ri · αi

i−1
∏

j=1

(1− rj · αj) ci

, (2)

where Uniform (0, 1) denotes a uniform distribution, and [·]
refers to Iverson bracket. During inference, all Gaussian

primitives are activated for novel view synthesis. Partic-

ularly, we minimize the differences between the rendered

results of the full model and the sub-model after dropout in

each training iteration for optimization:

LRDR =
∥

∥

∥
C − Ĉ

∥

∥

∥

1

+ SSIM(C, Ĉ). (3)

Note that, instead of using the groundtruth color in the ob-

served image for supervision, the rendered color C pro-

duced by the full model is employed. To demonstrate the

effectiveness of the loss function above, we splat the gradi-

ents of Gaussians to obtain gradient maps for comparison in

Fig. 5a and 5b.

If the rendered image of the full model is adopted as su-

pervision, only neighboring Gaussian primitives centered at

the dropouted one are optimized. As a result, the gradients

only exist locally (Fig. 5a) and encourage the model to fo-

cus on specific regions. In contrast, when the groundtruth

color is employed for supervision, all Gaussian primitives

are optimized and the gradients can be observed in all re-

gions (Fig. 5b). As a result, the gradients in different parts

of a 3DGS model may counteract the effects of each other

[46], producing inferior results.

Although inspired by dropout, our method excludes its

compensation strategy. Experiments show that the compen-

sation strategy does not significantly enhance model perfor-

mance and may alter the blending colors of the pixels unaf-

fected by dropout, introducing potential adverse effects.

(a) gradients from LRDR (b) gradients from Lgt

Figure 5. Visualization of the gradient maps. The dropouted

Gaussian is annotated with a red circle. Thus brighter regions cor-

respond to higher gradients.
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Figure 6. Explaining the effectiveness of dropout from an en-

semble learning perspective. The quality of the rendered image

significantly improves after integration, as evidenced by smoother

appearances and fewer artifacts. This effect becomes more pro-

nounced as the number of integrated sub-models increases.

Discussion. Previous studies [1, 17, 41] have revealed that

dropout mitigates overfitting by approximating the geomet-

ric mean over an ensemble of potential sub-networks. From

this point of view, the optimization process of our RDR can

be considered as training of several low-complexity sub-

models. Then, the inference process can be viewed as an

ensemble of the trained sub-models such that superior per-

formance can be achieved. As shown in Fig. 3, by integrat-

ing more low-complexity models, the ensemble model (i.e.,

the full model) produces consistent accuracy gains.

3.4. Edgeguided Splitting Strategy (ESS)

Although RDR facilitates 3DGS to better capture the 3D

structure of the scene, the optimized Gaussian primitives

are prone to being enlarged with a weakened capability to

model high-frequency details. To remedy this, we propose

an edge-guided splitting strategy (ESS) to further refine the

Gaussian primitives by splitting the large ones into smaller

ones to better fit the high-frequency details.

Edge Score. We first define an edge score to identify the

edge regions. For an input view I , an edge detection method

is employed to obtain pixel-wise probability E(I), ranging

from 0 to 1. Then, we project Gaussians onto the edge map

and compute the single-view edge score E ′ by aggregating

the probabilities of each primitive according to its contribu-



3DGS FreeNeRF SparseNeRF DNGaussian DropoutGS (Ours) Ground Truth

Figure 7. Visual results on the LLFF dataset. The ground truth of depth is obtained from the 3DGS trained with dense views. 3DGS fails

to render novel views with correct geometry. DNGaussian can better represent the scene structure in comparison, but it cannot get smooth

surfaces. The rendering results of FreeNeRF and SparseNeRF have a loss of details. Our model can learn complex details while obtaining

smooth surfaces.

tion to pixels:

E ′
i = αi

i−1
∏

j

(1− αj) ·
∑

p

E(I)Mi(p) (4)

where Mi(p) is a binary mask indicating whether the p-th

pixel is covered by the i-th Gaussian. Considering Gaus-

sians cover different numbers of pixels in multiple view-

points, we adopt a viewpoint accumulation approach to ob-

tain the final edge score Ei:

Ei =
M
∑

k=1

E ′
i,k

∑

p Mi
k

(5)

where E ′
i,k indicates the edge score at the k-th viewpoint out

of a total of M .

Splitting Strategy. After obtaining the edge scores, Gaus-

sian primitives with large scales and high edge scores are

split into smaller ones to better fit the edge details. Specifi-

cally, the mask for the target primitives is calculated as be-

low:

Medge = {Si ≥ Sthr} ∩ {Ei ≥ Ethr} , (6)

where Si denotes the size of i-th primitives while Sthr and

Ethr respectively denote the size threshold and edge thresh-

old. By splitting large Gaussian primitives into smaller

ones, finer high-frequency details can be modeled, as illus-

trated in Fig. 2.

3.5. Loss Function

Since DropoutGS only makes slight modifications to the

rendering process and does not rely on additional modules,

it can be seamlessly integrated with existing 3DGS tech-

niques. In particular, our approach remains effective and

provides further improvements when applied to methods

with depth regularization. In this case, the overall loss func-

tion of DropoutGS is expressed as:

L = Lgs + λdepthLdepth + λRDRLRDR, (7)

where Lgs denotes the loss function in original 3DGS [21].

Ldepth is the depth regularization used in DNGaussian and

LRDR denotes the proposed RDR loss. λdepth and λRDR

are the coefficients used to balance different constraints.

4. Experiments

4.1. Setups

Datasets. We evaluate our method on three benchmark

datasets: the LLFF [26] dataset, the DTU [20] dataset and

the Blender [27] dataset. We follow the 3-view setting used

in previous works [23, 37, 45] with the same split of LLFF

and DTU. Additionally, we adopt the same object masks as

[45] for fair comparison on the rendering quality of the tar-

get objects rather than the background in DTU. For Blender,

we train our model with 8 views and evaluate it on the other

25 views following the setting used in [19, 45].

Evaluation Metrics. We report PSNR, SSIM [40] and

LPIPS [51] metrics to evaluate the rendering quality. Be-

sides, we also adopt the Average Error (AVGE) [2] as a



LLFF DTU
Setting

PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓ PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓
SRF [5] 12.34 0.591 0.250 0.313 15.32 0.304 0.671 0.171

PixelNeRF [47] 7.93 0.682 0.272 0.461 16.82 0.270 0.695 0.147

MVSNeRF [4]

Trained on DTU

17.25 0.356 0.557 0.171 18.63 0.197 0.769 0.113

SRF ft [5] 17.07 0.529 0.436 0.203 15.68 0.281 0.698 0.162

PixelNeRF ft [47] 16.17 0.512 0.438 0.217 18.95 0.269 0.710 0.125

MVSNeRF ft [4]

Trained on DTU

Fine-tuned per Scene
17.88 0.327 0.584 0.157 18.54 0.197 0.769 0.113

Mip-NeRF [2] 14.62 0.495 0.351 0.246 8.68 0.353 0.571 0.323

DietNeRF [19] 14.94 0.496 0.370 0.240 11.85 0.314 0.633 0.243

RegNeRF [29] 19.08 0.336 0.587 0.149 18.89 0.190 0.745 0.112

FreeNeRF [45] 19.63 0.308 0.612 0.134 19.92 0.182 0.787 0.098

SparseNeRF [37] 19.86 0.328 0.624 0.127 19.55 0.201 0.769 0.102

3DGS [21] 15.52 0.405 0.408 0.209 10.99 0.313 0.585 0.252

3DGS† 16.46 0.401 0.440 0.192 14.74 0.249 0.672 0.169

DNGaussian [23] 19.12 0.294 0.591 0.132 18.91 0.176 0.790 0.102

DropoutGS (Ours)

Optimized per Scene

19.35 0.282 0.622 0.128 20.22 0.150 0.830 0.086

† with the same hyperparameters and the neural color renderer as DNGaussian.

Table 1. Quantitative comparison on the LLFF and DTU datasets. The best, second-best, and third-best entries are marked in red ,

orange , and yellow , respectively.

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 14.934 0.687 0.318

NeRF (Simplified) 20.092 0.822 0.179

DietNeRF 23.147 0.866 0.109

DietNeRF + ft 23.591 0.874 0.097

FreeNeRF 24.259 0.883 0.098

SparseNeRF 22.410 0.861 0.119

3DGS 22.226 0.858 0.114

DNGaussian 24.305 0.886 0.088

DropoutGS (Ours) 24.476 0.889 0.085

Table 2. Quantitative Comparison on Blender for 8 input

views. The best, second-best, and third-best entries are marked

in red , orange , and yellow , respectively.

metric, which is the geometric mean of MSE,
√
1− SSIM

and LPIPS. All results are averaged over three repeated

experiments.

Baselines. We compare our DropoutGS with 9 state-

of-the-art methods, including one 3DGS-based method

(DNGaussian [23]), 5 NeRF-based methods (FreeNeRF

[45], SparseNeRF [37], RegNeRF [29], DietNeRF [19], and

Mip-NeRF [2]) and 3 generative methods (MVSNeRF [4],

PixelNeRF [47], SRF [5]).

Implementations. Our approach is built on the PyTorch

framework. We train our model for 6k iterations on the

LLFF, DTU, and Blender datasets. Following DNGaussian

[23], we initialize 3DGS and DropoutGS with a randomly

generated point cloud.

4.2. Performance Evaluation

The LLFF Dataset. We evaluate our method on eight com-

plex scenes of the LLFF dataset with 3 views as input.

Quantitative results are presented in Table 1 while visual

results are shown in Fig. 7.

It can be observed from Table 1 that our method outper-

forms other methods in terms of LPIPS and achieves the

second-best performance in SSIM and AVGE. This demon-

strates the superior quantitative performance of our method.

Moreover, as shown in Fig. 7, our DropoutGS produces re-

sults with finer details and fewer artifacts, while FreeNeRF

[45] and SparseNeRF [37] generate blurry results with infe-

rior perceptual quality. Although DNGaussian also captures

fine details, it suffers from severe hollow artifacts. Ben-

efiting from our RDR and ESS strategies, our DropoutGS

fills up the hollows caused by overfitting without sacrificing

details. Additionally, we further visualize the depth map

produced by different methods. As compared to DNGaus-

sian, our DropouGS generates more accurate depth maps

with smooth surfaces, which means the 3D structure is bet-

ter modeled.

The DTU Dataset. To evaluate the rendering ability of

our method on the object-centered scenes, we conduct our

experiments on the DTU dataset. As shown in Table 1,

our proposed method significantly outperforms all the base-

lines across multiple metrics in the 3-view setting, achiev-

ing state-of-the-art performance. Figure 8 illustrates that

DropoutGS successfully renders novel views with accurate

geometric structure and reduced overfitting artifacts such

as hollows and blurring, while DNGaussian suffers from

severe degradation in the foreground. Additionally, our

DropoutGS produces denser point clouds that are better

aligned with the surfaces of objects. This further demon-

strates the effectiveness of our DropoutGS.

The Blender Dataset. We also evaluate our model on the

Blender dataset with 8-view input, which contains eight

synthetic scenes each with widely varying training and test-

ing viewpoints. The quantitative results in Table 2 show that

the proposed method achieves the best performance in terms

of PSNR, SSIM, and LPIPS. From the qualitative results in



DNGaussian DropoutGS (Ours) Ground Truth

(a) Rendered images visualization

DNGaussian SmoothGS (ours) Ground Truth

FreeNeRF SmoothGS (ours) Ground Truth

DNGaussian3DGS DropoutGS (Ours)

(b) Gaussian point cloud visualization

Figure 8. Qualitative results on the DTU dataset. The ground

truth of depth is obtained from the 3DGS trained with dense views.

Our method learns a denser primitive distribution improving the

geometry accuracy.

DNGaussian

3DGS Ground Truth

Ground Truth

DropoutGS (Ours)

DropoutGS (Ours)

Figure 9. Qualitative results on the Blender dataset. Our

DropoutGS can smooth out the artifacts that appear in 3DGS and

DNGaussian, obtaining cleaner and smoother novel views.

Fig. 9, we can see that DropoutGS is able to generate views

with fewer floaters compared to the vanilla 3DGS and the

original DNGaussian. The hotdog scene also demonstrates

the ability of our method to smooth out inadequately trained

Gaussian primitives, resulting in a flatter surface. These ex-

periments show that DropoutGS achieves competitive per-

formance not only on the forward-facing dataset such as

LLFF and DTU but also on the wide-baseline dataset with

challenging reflective materials.

Compatibility. Our DropoutGS is compatible with dif-

ferent 3DGS methods and can be flexibly integrated with

them to improve their performance under sparse views. To

Method w/ Ours Setting PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓
✗ 16.46 0.401 0.440 0.192

3DGS†
✓

Random init.
18.05 0.326 0.545 0.155

✗ 19.86 0.222 0.670 0.112
3DGS†*

✓
MVS init.

20.53 0.205 0.706 0.102

✗ 20.45 0.196 0.712 0.101
CoR-GS* [50]

✓
Co-constraint

20.59 0.195 0.716 0.097

✗ 20.43 0.248 0.682 0.108
FSGS* [54]

✓
Depth constraint

20.70 0.200 0.713 0.099

✗ 19.94 0.228 0.682 0.116
DNGaussian*

✓
Depth constraint

20.64 0.210 0.717 0.101

Table 3. Compatibility to different 3DGS methods with 3 input

views on the LLFF dataset. init. denotes initialization. * with

the MVS point cloud as initialization.

demonstrate this, we combine our DropoutGS with the orig-

inal 3DGS, FSGS [54], and CoR-GS [50] for evaluation. As

listed in Table 3, our approach facilitates these methods to

produce notable gains in terms of all metrics. Unlike FSGS

and CoR-GS which employ the point cloud obtained from

[32] for initialization, Gaussians in 3DGS are randomly ini-

tialized so that they are more susceptible to the overfitting

issue. As a result, our method introduces more significant

improvements in 3DGS. Remarkably, our method is com-

petitive with different initialization methods and produces

consistent performance gains.

4.3. Ablation Study

In this subsection, we conduct ablation experiments to study

the effects of our DropoutGS. All experiments are con-

ducted on the LLFF dataset with 3 views input. Quantitative

and qualitative results are reported in Table 4 and Fig. 10.

RDR and ESS Strategies. We first conduct experiments

to investigate the effectiveness of RDR and ESS strategies.

Specifically, we introduce these two strategies to the base-

line method separately and compare their performance with

our DropoutGS. It can be observed from Table 4 that both

RDR and ESS introduce notable performance improvement

to the baseline. It is worth noticing that RDR produces a

significant gain on PSNR and SSIM, but introduces a slight

drop in LPIPS. With only RDR, Gaussian primitives are

prone to be large such that high-frequency details cannot

be well reconstructed. With both additional ESS, the large

Gaussian primitives are split into small ones to better cap-

ture details in edge regions. As a result, the LPIPS score is

improved together with PSNR and SSIM. Figure 10 further

compares the visual results produced by methods with dif-

ferent settings. It can be seen that RDR helps to fill in the

hollows caused by overfitting and ESS contributes to recov-

ering the high-frequency details in the rendered views.

More View Settings. In addition to the 3-view input, we

further evaluate the performance of DropoutGS in a more

view setting on the LLFF dataset. We respectively use 6

views and 9 views as input following the default settings

in DNGaussian and report the results in Table 5. Exper-

iments show that the DropoutGS achieves better perfor-

mance as the training view increases and outperforms the



RDR ESS PSNR↑ SSIM↑ LPIPS↓ AVGE↓
Baseline 18.76 0.582 0.300 0.139

w/ ESS ✓ 18.91 0.592 0.294 0.136

w/ RDR ✓ 19.26 0.608 0.317 0.134

DropoutGS ✓ ✓ 19.35 0.622 0.282 0.128

Table 4. Quantitative results of ablation study. We ablate our

model with 3-view input on the LLFF dataset. “Baseline” denotes

DNGaussian.

DropoutGSw/ EGSBaseline w/ RDR

Figure 10. Qualitative results of ablation study. The model with

only ESS can cause over-splitting, where too many insufficiently

trained Gaussians are generated in high-frequency regions as ar-

tifacts. Only the full model can generate clean and sharp novel

views.

Views Method PSNR ↑ LPIPS ↓ SSIM ↑ AVGE ↓

3

3DGS 15.52 0.405 0.408 0.209

3DGS† 16.46 0.401 0.440 0.192

DNGaussian 19.12 0.294 0.591 0.132

DropoutGS (Ours) 19.23 0.287 0.614 0.130

6

3DGS 20.63 0.226 0.699 0.108

3DGS† 21.09 0.229 0.699 0.103

DNGaussian 22.18 0.198 0.755 0.088

DropoutGS (Ours) 23.35 0.177 0.791 0.076

9

3DGS 20.44 0.230 0.697 0.108

3DGS† 23.21 0.176 0.785 0.076

DNGaussian 23.17 0.180 0.788 0.077

DropoutGS (Ours) 24.33 0.160 0.825 0.066

Table 5. Comparison with 3, 6, and 9 input views on LLFF.

baselines at all training settings. However, it can be ob-

served that the performance improvement of DropoutGS

decreases at denser viewpoint settings. This is mainly be-

cause denser viewpoints provide more constraints to the

model during training, thus reducing its dependence on ex-

ternal constraints.

Dropout Rate. We conduct ablation experiments on the

dropout rate to investigate its impact on RDR performance.

Table 6 reports the performance of DropoutGS with varying

dropout rates using 3 views with visual results being shown

in Fig. 11. As the dropout rate increases from 0.0 to 0.2,

quantitative performance gains are achieved in terms of all

metrics with fewer visual artifacts. When the dropout rate

continues to increase, although higher PSNR is produced,

the LPIPS score suffers a slight degradation due to exces-

sive smoothing of the resultant images.

Edge Threshold. We further conduct experiments to

investigate the impact of the edge threshold in our ESS

strategy. Quantitative and qualitative results are presented

in Table 7 and Fig. 12. As the edge threshold decreases,

high-frequency details can be better preserved such that the

LPIPS score is consistently improved from 0.317 to 0.275.

Dropout Rate = 0.4Dropout Rate = 0.0 Dropout Rate = 0.8

Figure 11. Qualitative results of the ablation study on the ran-

dom dropout rate. A large dropout rate results in a reduction of

artifacts but also a loss of details.

Dropout Rate PSNR ↑ SSIM ↑ LPIPS ↓ AVGE ↓
0.0 18.76 0.582 0.300 0.139

0.2 19.20 0.616 0.279 0.130

0.4 19.35 0.622 0.282 0.128

0.6 19.37 0.622 0.298 0.130

0.8 19.44 0.621 0.302 0.129

Table 6. Ablation results on the random dropout rate. We

conduct the reproduced performance of DNGaussian as the results

without random dropout regularization.

Edge Threshold (ET.) PSNR ↑ SSIM ↑ LPIPS ↓ AVGE ↓
INF 19.26 0.608 0.317 0.134

1× 10−1 19.22 0.608 0.316 0.134

1× 10−2 19.29 0.611 0.313 0.133

1× 10−3 19.35 0.622 0.282 0.128

1× 10−4 19.17 0.618 0.275 0.129

Table 7. Ablation results on the edge threshold. We explore the

performance of different edge thresholds on the LLFF dataset with

3 views as input.

ET.= 1 × 10ିଶET. = INF ET.= 1 × 10ିଷ ET.= 1 × 10ିସ

Figure 12. The visualization result of the ablation study on

the edge threshold. The highlighted foreground region appears

overfitting degradation at excessively small edge thresholds.

However, excessively low thresholds lead to notable distor-

tion with degraded PSNR performance. Overall, 0.001 is

selected as the default setting of the edge threshold.

5. Conclusion

In this paper, we present a novel coarse-to-fine framework,

termed DropoutGS, for sparse view rendering. Specifically,

we introduce the dropout technique into 3DGS and pro-

pose a random dropout regularization to alleviate overfit-

ting. Then, an edge-guided splitting strategy is designed

for further recovery of the high-frequency details. Exten-

sive experiments validate the effectiveness and superiority

of our approach over existing methods and demonstrate its

compatibility with 3DGS-based techniques.
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